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Case 1: Outbreak 
SIR Example
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Case 2: Infection declines immediately 
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Recall: Closed Population (No Birth & 
Death) 

• Infection always dies out in the population  

• Some infections will take longer to die out 

• There is a “tipping point” between two cases 

– # of people infected declines out immediately 

– Infection causes an outbreak before the infection dies 
down (# of people infected rises and then falls) 

 

 



Recall: Simple Model Incorporating 
Population Turnover 
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Recall: Our model 

• Set 

– c=10  (people/month) 

– =0.04 (4% chance of transmission per S-I contact) 

– μ=10 

– Birth and death rate=0.02 

– Initial infectives=1, other 1000 susceptible 

 

 



Here, the Infection Can Remain (Endemic) 

 



 This is the point where  
•Rate of new infections=rate of recoveries 
•A person infects on average 1 person before recovering 
•The level of susceptibles is at the lowest level where the 
infection is “sustainable” (in the short run) 

•At this point # susceptibles = # susceptibles at endemic 
equilibrium 

Why is the # of susceptibles still declining? 

Why is the # of susceptibles rising, to well above its 
 “sustainable” value? 

This fraction of susceptibles at endemic equilibrium is the minimum “sustainable” value of 
susceptible – i.e. the value where the properties above hold. 

•Above this fraction of susceptibles, the # infected will rise   
•Below this fraction of susceptibles, the # infected will fall 

Blue: # Susceptible 
Red: # infective 
Green: Force of Infection 



 
This is the point where  

•Rate of new infections=rate of recoveries 
•A person infects on average 1 person before 
recovering 
•The level of susceptibles is at the lowest level where 
the infection is “sustainable” (in the short run) 

The susceptibles are still declining here because the large # of 
infectives still causes enough infections that   
rate of immigration < rate of infections + deaths  

The rise is occurring because infectives are so low that 
so few infections occur that births >infections+deaths. 
S rises above the sustainable value because infectives are 
Still in decline until that point – so infectives remain low 
For a while! 



Equilibrium Behaviour 

• With Births & Deaths, the system can approach 
an “endemic equilibrium” where the infection 
stays circulating in the population – but in 
balance 

• The balance is such that (simultaneously) 

– The rate of new infections = The rate of immigration  

• Otherwise # of susceptibles would be changing! 

– The rate of new infections = the rate of recovery 

• Otherwise # of infectives would be changing! 

 

 



Tipping Point 

• Now try setting transmission rate β to 0.005 



Case 2: Infection declines immediately 
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Recall: Simple Model Incorporating 
Population Turnover 
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Recall: Our model 

• Set 

– c=10  (people/month) 

– =0.04 (4% chance of transmission per S-I contact) 

– μ=10 

– Birth and death rate=0.02 

– Initial infectives=1, other 1000 susceptible 

 

 



Here, the Infection Can Remain (Endemic) 

 



Damped Oscillatory Behavior 

• Modify model to have births and deaths, with an 
annual birth-and-death rate  

• Set Model/Settings/Final Time to 1000 (long time 
frame) 

• In “Synthesim” (“Running man”) mode, set 
Birth/death rates  
– 0.02 

– 0.05 

– 0.07 

– 0.01 

– 0.001 

 



Exploring the Tipping Point 

• Now try setting transmission rate β to 0.005 



Infection Extinction 
• As for the case with a closed population, an 

open population has two cases 

– Infection dies out immediately 

 

 

– Outbreak: Infection takes off 

• Here – in contrast to the case for a closed population –
the infection will typically go to an endemic equilibrium 
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Typically, in Endemic Equilibrium, the Uninfected 
Fraction of the Population (S/N) is the Young 

 



 



 



Delays 

• For a while after infectives start declining (i.e. 
susceptibles are below sustainable endemic 
value), they still deplete susceptibles sufficiently 
for susceptibles to decline 

• For a while after susceptibles are rising (until 
susceptibles=endemic value), infectives will still 
decline 

• For a while after infectives start rising, births > # 
of infections =>susceptibles will rise to a peak 
well above endemic level 

 



Infection 

• Recall:  For this model, a given infective infects      
c(S/N) others per time unit 

– This goes up as the number of susceptibles rises 

• Questions 

– If the mean time a person is infective is μ, how many 
people does that infective infect before recovering? 

– With the same assumption, how many people would 
that infective infect if everyone else is susceptible? 

– Under what conditions would there be more infections 
after their recovery than before? 

 



Fundamental Quantities 

• We have just discovered the values of 2 
famous epidemiological quantities for our 
model 

– Effective Reproductive Number: R*  

– Basic Reproductive Number: R0  

 

 



Effective Reproductive Number: R* 

• Number of individuals infected by an ‘index’ 
infective in the current epidemological context 

• Depends on  
– Contact rates/frequency 

– Transmission probability 

– Length of time infectives 

– (Fraction) of Susceptibles 

• Affects 
– Whether infection spreads 

• If R*> 1, # of cases will rise, If R*<1, # of cases will fall 
– Alternative formulation: Largest real eigenvalue <> 0 

– Endemic Rate 
 



Basic Reproduction Number: R0 

• Number of individuals infected by an ‘index’ infective in 
an otherwise disease-free equilibrium 
– This is just R* at disease-free equilibrium all (other) people in 

the population are susceptible other than the index infective 

• Depends on  
– Contact number 
– Transmission probability 
– Length of time infected 

• Affects 
– Whether infection spreads 

• If R0> 1, Epidemic Takes off, If R0<1, Epidemic dies out 
– Alternative formulation: Largest real eigenvalue <> 0 

• Initial infection rise  exp(t*(R0-1)/D) 

– Endemic Rate 
 



Basic Reproductive Number R0 

• If contact patterns & infection duration remain unchanged 
and if fraction f of the population is susceptible, then 
mean # of individuals infected by an infective over the 
course of their infection is f*R0 

• In endemic equilibrium:  Inflow=Outflow (S/N)R0=1 
– Every infective infects a “replacement” infective to keep 

equilibrium 
– Just enough of the population is susceptible to allow this 

replacement 
– The higher the R0, the lower the fraction of susceptibles in 

equilibrium! 
• Generally some susceptibles remain:  At some point in epidemic, 

susceptibles will get so low that can’t spread 
 

 



Open/Closed Population 

Case Does Epidemic 
Occur? 

Steady-state (Endemic) 

Fraction 
infective 

Fraction 
susceptible 

Open 
Population 

R0>1 Yes Such that 
Infection 
rate=Recovery 
rate 

1/R0 

R0<1 No 0 1 

Closed 
Population 

R0>1 Yes 0 <1 (often <<1) 
but >0 

R0<1 No 0 1 



Our model 

• Set 

– c=10  (people/month) 

– =0.04 (4% chance of transmission per S-I contact) 

– μ=10 

– Birth and death rate= 0 

– Initial infectives=1, other 1000 susceptible 

• What is R0? 

• What should we expect to see ? 

 

 

 



Thresholds 
• R* 

– Too low # susceptibles => R* < 1: # of infectives declining 

– Too high # susceptibles => R* > 1: # of infectives rising 

• R0 

– R0>1: Infection is introduced from outside will cause 
outbreak 

– R0<1: “Herd immunity”: infection is introduced from 
outside will die out (may spread to small number before 
disappearing, but in unsustainable way) 

• This is what we try to achieve by control programs, 
vaccination, etc. 

• Outflow from susceptibles (infections) is 
determined by the # of Infectives 

 

 

 

 



Equilibrium Behaviour 

• With Births & Deaths, the system can approach 
an “endemic equilibrium” where the infection 
stays circulating in the population – but in 
balance 

• The balance is such that (simultaneously) 

– The rate of new infections = The rate of immigration  

• Otherwise # of susceptibles would be changing! 

– The rate of new infections = the rate of recovery 

• Otherwise # of infectives would be changing! 

 

 



Equilibria 

• Disease free 
– No infectives in population 

– Entire population is susceptible 

• Endemic 
– Steady-state equilibrium produced by spread of 

illness 

– Assumption is often that children get exposed when 
young 

• The stability of the these equilibria (whether the 
system departs from them when perturbed) 
depends on the parameter values 
– For the disease-free equilibrium on R0 

 


